NEB-XII
 Model Question Mathematics

2079/2023

Candidates are required to give their answers in their own words as far as practicable. The figures in the margin indicate full marks.
Time: 3hrs
Full Marks: 75
Attempt all questions.

Group "A"

1) What is an arrangement of the n natural numbers called?
A) Induction
B) Permutation
C) Combination
D) Expectation
2) Let $1, w, w^{2}$ be the cube roots of unity. Under which operation is the set $A=\left\{1, w, w^{2}\right\}$ closed?
A) Addition
B) Subtraction
C) Multiplication
D) Division
3) What is the domain of $\sin ^{-1} x$?
A) $x \geq 1$ or $x \leq-1$
B) $(-\infty, \infty)$
C) $-1<x<1$
D) $-1 \leq x \leq 1$
4) ABCD is a parallelogram. Which one of the following represents area of the parallelogram?
A) Magnitude of vector product of two vectors along $A B$ and $B D$.
B) Magnitude of vector product of two vectors along $A B$ and $D C$.
C) Magnitude of vector product of two vectors along AC and BC.
D) Magnitude of vector product of two vectors along $A B$ and $A D$.
5) If a conic section haseccentricity $(\mathrm{e})=\frac{\sqrt{a^{2}-b^{2}}}{a}$, what is the equation of that conic section?
A) $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
B) $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
C) $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{a^{2}}=1$
D) $\frac{x^{2}}{b^{2}}+\frac{y^{2}}{b^{2}}=1$
6) If $\cos \Theta=\frac{-1}{2}$ for integer (n), what is the general value of Θ ?
A) $2 n \pi \pm \frac{2 \pi}{3}$
B) $\mathrm{n} \pi+(-1)^{n} \frac{\pi}{3}$
C) $n \pi-\frac{\pi}{3}$
D) $n \pi+\frac{\pi}{3}$
7) Let A and B be two dependent events. If $P(A)=\frac{1}{2}, P(B)=\frac{3}{4}$ and $P(A \cap B)=\frac{2}{5}$, what is the value of $\mathrm{P}(\mathrm{A} / \mathrm{B})$?
A) equal to $P(B / A)$
B) equal to $\mathrm{P}(\mathrm{A})$
C) less than $\mathrm{P}(\mathrm{A} \cap \mathrm{B})$
D) less than $\mathrm{P}(\mathrm{B} / \mathrm{A})$
8) The edge of a cube increases from 10 cm to 10.025 cm . What would be the approximate increment in volume?
A) $10^{3} \mathrm{~cm}^{3}$
B) $10.025^{3} \mathrm{~cm}^{3}$
C) $7.5187 \mathrm{~cm}^{3}$
D) $7.5 \mathrm{~cm}^{3}$
9) What is the integrating factor of the differential equation $\cos ^{2} \mathrm{x} \frac{d y}{d x}+y=1$?
A) $\tan x$
B) $e^{\tan x}$
C) $\sec ^{2} x$
D) $\mathrm{e}^{\sec 1 \mathrm{x}}$
10) What is the number of solutions of the system of linear equations $x+y=5$ and $x+y=7$?
A) One solution
B) No solution
C) Infinite solutions
D) More than one solution
11) Forces P and Q are acting along ceiling and floor of a rectangular room. What is the nature of the forces?
A) Like
B) unlike
C) collinear
D) parallel

OR
If $\Delta y_{t}=y_{t+1}-y_{t}$, then $\Delta^{2} y_{t}$ is equal to...
A) $y_{t+2}-y_{t+1}$
B) $y_{t+1}-y_{t}$
C) $y_{t+2}-y_{t+1}+y_{t}$
D) $y_{t+2}-2 y_{t+1}+y_{t}$

Group "B" $8 \times 5=40$

12) For any positive integer $n,(a+x)^{n}=c_{0} a^{n}+c_{1} a^{n-1} x+c_{2} a^{n-2} x^{2}+\ldots \ldots . .+c_{n} x^{n}$
a) How many terms are there in the expressions?
b) Write the binomial coefficients in the expansion.
c) Write the general term of the expansion.
d) Write the relation among $\mathrm{C}(\mathrm{n}, \mathrm{r}-1), \mathrm{C}(\mathrm{n}+1, \mathrm{r})$ and $\mathrm{C}(\mathrm{n}, \mathrm{r})$.
e) What is the value of $\mathrm{C}_{0}+\mathrm{C}_{1}+\mathrm{C}_{2}+\ldots+\mathrm{C}_{\mathrm{n}}$?
13) a) Using the principle of mathematical induction, showthat: $1+2+3+\ldots .+\mathrm{n}<\frac{1}{8}(2 \mathrm{n}+1)^{2}$
b) Find the quadratic equation whose one of the roots is $2+\sqrt{3}$.
14) a) Given $y=\sin ^{-1} x$ and $y>0$, express cosy and tany in terms of x.
b) If \vec{a}, \vec{b} and \vec{c} are any three vectors such that $\vec{a} \times \vec{b}=\vec{a} \times \vec{c}$ for $\vec{a} \neq(0,0)$., show that $\vec{b}=\vec{c}$.
15) The price in Rupees (X) and demand in unit (Y) of 6 days of a week is given as:

\mathbf{X}	10	12	13	12	16	15
\mathbf{Y}	40	38	43	45	37	43

Calculate the Pearson's coefficient of correlation and the regression coefficients of X on Y .
16) a) Define L.Hospital's rule.
b) Write the slope of the tangent and normal to the curve $y=f(x)$ at $\left(x_{1}, y_{1}\right)$.
c) Write the integral of $\int \frac{1}{x^{2}+a^{2}} \mathrm{dx}$
d) What is the integral of $\int \operatorname{Sinh} x d x$
17) a) Solve: $\frac{d y}{d x}=\frac{y}{x}$
b) Verify the Rolle's theorem for $f(x)=x^{2}+3 x-4$ in $[-4,1]$.
18) Using simplex method, maximize $P(x, y)=15 x+10 y$ subject to $2 x+y \leq 10, x+3 y \leq 10, x, y \geq 0$
19) A particle is projected with a velocity ' v ' and greatest height is ' H ', prove the horizontal range R is: $\mathrm{R}=\sqrt{H\left(\frac{v^{2}}{2 g}-H\right)}$

OR,
The cost function $\mathrm{C}(x)$ in thousands of rupees for producing x units of maths textbooks is given by $C(x)=30+20 x-0.5 x^{2}, 0 \leq x \leq 15$
a) Find the marginal cost function.
b) Find the marginal cost for producing 12,000 maths textbooks.
20) a) Using matrix methods, solve the following system of linear equations :

$$
x+y+z=4,2 x+y-3 z=-9,2 x-y+z=-1
$$

b) Apply De-moivre's theorem to find the value of $\left[2\left(\cos 15^{\circ}+i \sin 15^{\circ}\right)\right]^{6}$
c) Prove that $\left(1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\cdots\right)\left(1-\frac{1}{1!}+\frac{1}{2!}-\frac{1}{3!}+\cdots\right)=1$
21) a) Find the direction cosines of the line joining the points $(4,4,-10)$ and $(-2,2,4)$.
b) Find the angle between the two diagonals of a cube.
c) Find the vertices of the conic section:

$$
16(y-1)^{2}-9(x-5)^{2}=144
$$

22) a) If the limiting value of $\frac{(f(x)-5)}{x-3}$ at $x=3$ is 2 by using L' Hospital' rule, find the appropriate value of $f(x)$.
b) Write any one homogeneous differential equation in (x, y) and solve it.
c) The concept of anti-derivative is necessary for solving a differential equation. Justify this statement with example.
